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Abstract. The research reported herein involves the study of the steady state and transient motion of a system
consisting of an incompressible, Newtonian fluid in an annulus between two concentric, rotating, rigid spheres. The
primary purpose of the research is to study the use of an approximate analytical method for analyzing the transient
motion of the fluid in the annulus and the spheres which are started suddenly due to the action of prescribed
torques. The problems include cases where: (a) one (or both) spheres rotate with prescribed constant angular
velocities and (b) one sphere rotates due to the action of an applied constant or impulsive torque.

In this research, the coupled solid and fluid equations of motion are linearized by employing the perturbation
technique. The meridional dependence in these equations is removed by expanding the dependent variables in a
series of Gegenbauer functions with variable coefficients and employing the orthogonality property of these
functions. The equations for the variable coefficients are solved by separation of variables and Laplace transform
methods. Results for the stream function, circumferential function, angular velocity of the spheres and torque
coefficient are presented as a function of time for various values of the dimensionless system parameters.

1. Introduction

The problem involving the steady-state motion of a viscous, incompressible fluid contained in
an annulus between two concentric spheres which rotate about a common axis with an
angular velocity which has been prescribed a priori has been the subject of extensive
research in engineering, meteorology and geophysics. Proudman [1], Stewartson [2], Carrier
[3], Haberman [4], and Munson and Joseph [5] obtained an approximate analytical solution
to the problem involving the flow in an annulus between two spheres rotating with prescribed
constant angular velocities. Pedlosky [6] extended the problem to include temperature
effects. Dennis and Singh [7] solved this problem by employing a quasi-analytical method;
i.e., they expanded the stream function, vorticity, and the circumferential function in a series
of orthogonal functions and then solved the resulting system of ordinary differential
equations numerically. Greenspan [8], Schultz and Greenspan [9], Schrauf [10], and Bar-
Yoseph, Blech and Solan [11] solved this problem by employing numerical methods.

Experimental results have been obtained for the steady-state problem by a number of
investigators. Sorokin, Khlebutin, and Shaidurov [12], Khlebutin [13], Sawatzki and Zierep
[14], Munson and Menguturk [15], Wimmer [16,17], Nakabayashi [18] and Waked and
Munson [19,20] studied the problem involving flow in an annulus between two spheres
where either the inner or the outer sphere rotates with constant angular velocity. Munson
and Douglass [21] obtained experimental (and theoretical) results for the problem where the
inner sphere is subjected to a prescribed oscillatory (sinusoidal) motion.
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The problem involving the transient motion of a fluid contained in an annulus between two
concentric rotating spheres has received less attention in the literature. Pearson [22, 23],
Dennis and Quartapelle [24], Krause and Bartels [25], and Bartels [26] employed the
finite-difference method to obtain a solution to the transient problem for the case where one
of the spheres is suddenly rotated and then held at a prescribed constant angular velocity.
The study of this problem for a sphere rotating in an infinite medium has been conducted by
Illingworth [27], Benton [28], Barrett [29], Dennis and Ingham [30], Dennis, Singh, and
Ingham [31], and Takagi [32]. To date, there has been no published research involving the
transient motion of a viscous fluid contained in an annulus between rotating spheres where
the angular velocities of the spheres are not prescribed a priori; i.e., where the motion of the
system is a result of the coupling (interaction) between the fluid and the spheres. Recently,
Yang [33] studied this problem by employing the finite-difference method.

The primary purpose of this research is to study the use of an approximate analytical
method for analyzing the transient flow of a viscous incompressible fluid contained in an
annulus between two spheres which are started suddenly due to the action of prescribed
torques, instead of prescribed angular velocities. With this method, the equations of motion
for the rigid body and the fluid are expressed in terms of a stream function () and a
circumferential function (), and then linearized for small values of Reynolds number by use
of the perturbation method. The dependence of and 0 on the meridional coordinate 0 is
removed by expanding the dependent variables in a series of Gegenbauer functions with
variable coefficients and employing the orthogonality property of these functions. This
approach was utilized successfully for the steady-state problem by Munson and Joseph [5]
who employed Legendre polynomials instead of Gegenbauer functions. However, Dennis
and Singh [7] found the Gegenbauer functions to be more appropriate for this problem. The
resulting equations for the variable coefficients are then solved by employing the Laplace
transform method (to obtain the zeroth-order approximation) and the separation of variables
method (to obtain the higher-order approximations). Results for A, , angular velocities of
the spheres, torque coefficients, and fluid angular momentum are presented as a function of
various values of the dimensionless system parameters.

2. Mathematical model

The system under study consists of an isothermal, incompressible, Newtonian fluid contained
in an annulus between two concentric rotating rigid spheres (see Fig. 1). The inner and outer
radius of the annulus are r and r, respectively. The spheres are assumed to be rigid, and
constrained to rotate about the z* axis under the action of externally applied torques.

The fluid velocity components in the direction of the spherical coordinates r*, 0, and are
given as u*, v*, and w*, respectively. The flow is independent of the coordinate due to
axial symmetry about the spin axis. The transformation equations which relate the fluid
velocity components to the stream function (*) and circumferential function (Q*) are given
as

1U 2 * _ ,x ' * 1 * * __r * ( -x2
1 / 2

( 1 )

where
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Fig. 1. Notation for flow in spherical annulus problem.

xcos0, I"* = cos *'x dX and ir= dr*
,r dr*

The form of (1) for u* and v* is such that the continuity equation is automatically
satisfied. The system variables in this equation are expressed in dimensionless form by
employing the following transformations:

r*
r=

o

t*v*

t = -*2
ro

0*
t =-

A*

r0

(2)
0 toor

where

v* = kinematic viscosity,

ro = reference radius,

co = reference angular velocity.

The equations of motion for the fluid are developed in vorticity form by taking the curl of
the Navier-Stokes equations. This yields

R M(fL) = , -r ]

! L(MIP) = - [(1 -x2) fr +
R r3 (1 _ 2) ]

1 _2L(P) rx Tx]
+ -2 ['V rL('Vt) - Pl'L(Pl)] + 3 (1 2 'r + 'P,r r L (1 -Ix) I

where

d2 1 ) d2

L = -r + - (1- x2
)

dr 2 r Ox2'

(3a)

(3b)

(4)

3

M= L- d)
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R = Reynolds number = ° *° (5)

The equation of motion for the inner or outer sphere rotating under the action of an
applied torque is

()Iq 0 q,t + o [rq(rqfl,r[rq, x, t] - 2 f[rq, x, t])] dx = Nq, (6a)

q(O) = O, (6b)

where

q = 1, 2 (subscripts referring to inner and outer sphere, respectively),

rq = r*q/r o ,

rq* = inner or outer radius of the annulus,

Oq = q o,

o*q = angular velocity of the inner or outer sphere,

q ( 8) J, *
Pf 

J = mass moment of inertia of the inner or outer sphere,

p; = density of the fluid,

Nq =8) ,-y*3 N ,' (7)
0o 0a

Nq = external torque applied to the inner or outer sphere,

/L* = p v* .

The equations which result from the symmetry of the flow in the annulus are

Q[r, 1, t] = O, T[r, 1, t] = O, L[r, 1, t] = (8a,b,c)

x[r, 0, t] = 0, T[r, 0, t] = 0, LP[r, 0, t] = 0. (8d,e,f)

The conditions which must be satisfied at the interfaces of the fluid and solid are

f[rq, x, t]

rZ(l_ X2 ) = Oq 4 [rq, x, t] = O, ,r[rq, x, t] =O, for q = 1, 2. (9a,b,c)

In this analysis the fluid inside the spherical annulus is initially at rest; hence, the initial
conditions for the fluid are

1[r, x, 0] = P[r, x, 0] = 0. (10)
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The cases which are discussed in this paper consist of the following, or combinations of the
following: (a) the inner (or outer) sphere is started from rest with a prescribed constant
angular velocity (i.e., step-function input), and (b) the inner (or outer) sphere is started from
rest due to the action of a prescribed impulsive torque. A third case in which the inner (or
outer) sphere is started from rest due to the action of a prescribed constant torque is
discussed in [34]. The reference angular velocity in case (a) is chosen to be the larger of the
two prescribed angular velocities. Note that, for this case, (6a) and (6b) are not required
since oq is prescribed. The reference angular velocity for case (b) is computed by applying
the impulse-momentum principle.

The viscous torque (T*) acting on the inner or outer sphere can be evaluated by
integrating the shearing stress (,r) over the corresponding spherical surface. The expression
for the torque is given in dimensionless form as

3 l
Tq = J [rq(rq.l,[rq, x, t] - 2 f1[rq, x, t])] dx, (11)

where

q=3) q = 1, 2.

3. Analysis

3.1. Perturbation method

The mathematical model was linearized for small values of Rq by employing the perturbation
method. For this purpose, the dependent variables are expressed as follows:

i = > (Rq)k f( k ) , I = (Rq)'')I (12a)
k=O 1=1

Nq = ' (Rq)kNk), (q = > (Rq)k q ), (12b)
k=O k=O

Tq = (Rq)(k)T ) (12c)
k=0

where k = 0, 2, 4,..., I = 1, 3, 5,... and

Rq = Reynolds number based on r* = r(q = 1, 2).

Substituting (12a) and (12b) into (3a), (3b) and equating coefficients of like powers of Rq
yields

M(f2(k)) 1 k2 [ ( k - l -m-)l , (13a)
r m=Ox (13a)

rm=O
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2- [-( _,ml(rx(r, ()1
r m=O (l-) + ' )J

1-2

2
+r 2 [L X( (1 ->) x+ (13b)

n=1 (Y-'7 )

In a similar manner, for the impulsive torque problem, equation (6a) yields

( 1' )IW(k) + "= [r(rq 2 -2f(k)] dx = 0,

(14)
,(O) = 0, qO 

where k, m=0,2,4,..., k-m 2, 1,n=1,3,5,..., 1-n 2, q = 1,2, and

qO = the equivalent initial angular velocity computed with the use of the
impulse-momentum principle.

Finally, substitution of (12a) into (8), (9) and (10) yields

f(k)[r, 1, t] = *(')[r, 1, t] = 0, (15a)

LP(')[r, 1, t] = f(k)[r, 0, t] = 0, (15b)

'(/)[r, O, t] = LI(1)[r, 0, t] = 0, (15c)

fl(k)[r , x, t] .(k) 
r2(1 _ x )

= oqkO (16a)

l()[rq, x, t] = 0, !t()[rq, x, t] = 0, (16b)

f"(k)[r, , 0] = P(')[r, x, 0] = 0, (17)

where k = 0,2,4,6,..., 1 = 1,3,5,..., q = 1,2, and

kO = 1 if k=0,

=0 if k0.

The expressions for the k th order approximations of the dimensionless viscous torque were
obtained in the same manner by substituting (12c) into (11) and equating coefficients on like
powers of Rq. This yields

T(k) = 3 f r t dx (18)q 2 0 [rq(rq Pll[rq, x, t] - 2flk)[rq , t])l dx, (18)

where k=0,2,4,... and q=1,2.
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3.2. Form of equations governing 't(') and fl(k)

The form of the solution for P(') and fl ( k) was expanded in a series as follows:

k

(k) = I, (X)fk)2(r, t) , (19a)
i=o

~0 = E Ij+2(X)gt(/(r, t), (19b)
J=1

where i, k= 0, 2, 4, ... ; j, 1= 1, 3, 5, ... , and

I,(x) = Gegenbauer polynomials.

The general form of the series given in (19) was employed by Munson and Joseph [5];
however, they expanded in terms of Legendre polynomials instead of Gegenbauer polyno-
mials. The equations governing the functions I,(x) were obtained by employing the
separation of variables method in conjunction with the equations M(Ifk)) - M(I()) = 0.
This yields

(1 - x2 )I,nxx(x) + aIn(x) = 0, (20)

where Oa = separation constant, and if a = n(n - 1), then

In(x) = nth order Gegenbauer function,

-1 (dd n-2(x 2 1in-l
(n - 1)! dx/ ,- 2 ) , for n =2, 3,4, (21)

The Gegenbauer polynomials generated from (21) automatically satisfy the required
symmetry conditions given in (8). They also satisfy the following orthogonality condition:

f Im (x)In(x) dx 2
1 (1 - X

2
) n(n - 1)(2n - 1) ' m n,

=0, m n. (22)

The equations governing the variable coefficients f(k) and g) are obtained by: (a)
substituting (19) into (13), (b) multiplying the resulting equations by Ip+2/(1 - x 2 ), (c)
integrating each term in the equations over the region -1 x 1 and (d) applying the
orthogonality property defined in (22). This yields

f(k) [(i + 1)(i + 2) f(k) _f(k) (i + 1)(i + 2)(2i + 3) ( 1 k2 (km) (23
z,rr [ r2 1 2 r m=o 
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r-[ 2( + ))(j +2) 2)] g,

+ [ (j + 1)(j + 1) [(j + 1)(j+2) - 6] ] g° g. + [ r2 ,
4 1 r Irgjct

(j + 1)( + 2)(2j + 3) [( 2 F(
I '

)m) + I ((fln) + (
l
n) + )

2 L m/ \~= o 3 .1
(23b)

where

k-m-i m

Fk '
rn) = [R(i, jj, ii)g(k fl)f(,) - R(i, ii, jj)gk- -I)f(m) (24a)r jH= (24a)=

l-m-r m

r2 " [Q(j, ij, ii)rf,(m) + R(i, ij, ii)f )]f (-m-1) (24b)
tj=O Ii=O

r(3Ir) = 2 [R(j, ji, jj)g('-m-1) (m) _ (i+ 1)(ji + 2) (24c)
jj=l 2=l

jr4m) = 2 , [R(Ij, ji, jj)g(.\-m-1n)( (m) (ji + 1)(ji + 2) (m))] (24d)

jj=1 ji=l

x[(-m-) (j i + 1)(ji + 2) (-m-)] (24e)
X [izrr r 2

git (24e)

R(j, jj ji) = f O T=0 J_ 2j+ 2
.X dx, (25a)

f=l x +2+ 2I"+1 x,

e< (i' iiX2 ii)=) jJ 2 dx , (25b)

i,k,m=0,2,4,..., j,l,n=1,3,5,...,

ii, ij = 0,2,4,..., ji, jj = 1,3,5 ....

The conditions imposed on f (k)(rq, t) and g(')(rq, t) are obtained in the same manner by

employing (14), (16a), (16b) and are given as

5q f t(k)[rq t] + rqfo (k)[rq, t]- 2rqf k)[rq, t] 0, (26)2 ,,O . ~)r, f rqortq (26)

f(k)[rq, t]
2r2 c k (27a)

2rq

g/) (rq, t)= g- )(rql t)= 0 (27b)

where 1, j=1,3,5,..., i, k=0,2,4,..., andq=1,2.
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The corresponding initial conditions for f(k) and g() are obtained from (17) as

fk(r, 0) =0 , g(/)(r, 0) = 0, for all i, j, k and I. (28a,b)

The expressions for the kth order approximations of the dimensionless viscous torques (18)
can also be obtained in terms of the functions f k) and g(l) by following this same procedure.
This yields

T(k) = [r 2 f(k) [rq, t] - 2 rq f(k) [rq, t]], (29)

where k =0, 2,4,..., and q = 1, 2.

3.3. Solution of the zeroth-order approximation

The mathematical model for the zeroth-order approximation, f ), can be obtained by
setting k = i = 0 in (23a), (24a), (26), (27a) and (28a). It consists of a homogeneous partial
differential equation with nonhomogeneous boundary conditions. The form of the partial
differential equation is

f (0) _ 2 f (0) _ f (o) = 0 (30)
fOrr fr2 )f = Q (30)

The solution to (30) is obtained by employing the Laplace transform method. The Laplace
transform of (30) maps the dimensionless time domain (t) into the (s) domain. The general
solution of the resulting ordinary differential equation is

f(°)(r, s) = r 2 [AJ3 /2(is/1 2 r) + BJ_3/2 (i1 12r)l, (31)

where J-3/2 and J3 / 2 are the half-order Bessel functions, and

f(°)(r, s) = Laplace transform of f(°)(r, t) .

The constants A and B are determined for the various case-study problems by employing
(31) in conjunction with the corresponding transformed boundary conditions. The coefficient
f0°)(r, s) has the following general form for all of the case study problems:

f0°)(r, s) = 1 S(r) (32)

Equation (32) can be inverted by employing the residue theorem; i.e.,

f(0°)(r, t)= ~ Resn, (33)
r0n=O

where Resn are the residues of ef(o)[r, s]. The specific forms for S, Q and Resn for the
various case-study problems can be found in [34] and are available from the author.
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3.4. Solution of higher-order approximations

The mathematical model for the higher-order coefficients f(k) and g(') (see (23a), (24a),
(26a), (27) and (28)) is comprised of non-homogeneous partial differential equations with
homogeneous boundary conditions. The solution to this model is obtained by employing the
separation of variables method. In order to accomplish this, it is first necessary to determine
the general solution to the homogeneous forms of the partial differential equations. These
solutions can be written as

f ((r t)= Fie (r)ni)(t), (34a)
p=l

g()(r, t)= G () (r)7p (t), (34b)
p=

1

where i=0,2,4,..., k=2,4,6,..., l, j= 1,3,5,..., and

F k)(r) = Ak) r1/2J +() 1J_(k+3/2 )((AA r) + B)r/ 2 r (35a)

G(O)(r) = A()r1 /2 )(A(.)r) + B(')r1 2 (,+3/2)(A)/r) + C()r-('+ + D(1)r(+2) (35b)1P 1P J( 1P 1P 1P 1 (+3/2) P -(l+3/2)ktPr '

J,+(+3/2) are the half-order Bessel functions, and A k) are the characteristic values.
The unknown constants in (35) can be determined (relative to an arbitrary constant) for

each case-study problem by employing the appropriate equations imposed on F(k)(r) and
G(')(r) (see (26), (27)). The characteristic values (A p)) are obtained by employing these
equations and applying the condition for a nontrivial solution. It can be shown [34] that the
F(k) and G () functions satisfy the general orthogonality property.

The form of the equations governing the time function _(k) and _() is obtained by
substituting (34) into (23), (24) and employing this orthogonality property of the F(k) and
G(p) functions. The resulting equations have the following general form:

7,(r) + (r) (36),Pt /ip qp Zip (t), (36)

so that

(r) = f e-A(t- )z)(r) dT. (37)

The detailed forms of Z(r), 71() and the equations for determining the characteristic values
(A(r)) and the constant coefficients in (35) are presented in [34] for the various case-study
problems.

4. Results

A computer program was employed to evaluate the series for f(k), g(l), f(k), ('), , P , and
Tq. The program was developed to determine the required characteristic values, orthogonali-
ty constants, integrals, etc. for each of the case-study problems. Numerical results were
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obtained by running this program in double precision for various values of the dimensionless
parameters. The designations for the different case studies which are discussed in this
manuscript are given in Tables la and lb. Future reference to the results obtained from a
particular case study will be made by employing the unit code in the tables; e.g., a-IA-1
refers to case study problem (a) with r,/r2 = 0.9, o, = 1, 2 = 0, and R 2 = 10.

4.1. Convergence

The convergence of the series expansions for the variable coefficients f(k) and g() in (34a)
and (34b) was evaluated by comparing values of these functions obtained with increasing
number of terms in the series. Typical plots of the coefficients f (k) at t = 0.005 and g(') at
t = 0.2 are shown in Figs 2-4 for the impulsive torque case (case lb). These figures show that
the order of magnitude of the leading coefficients fri) decreases significantly with increasing
i. This was also true in the case of the coefficient g(/). Moreover, for a fixed k and/or 1, the
order of magnitude remained relatively constant regardless of the values of i and j. In
general, for very small values of time (t - 0.005), the rate of convergence of the series for
the higher-order coefficients decreases with increasing order. However, for small values of
time and low values of Reynolds numbers (i.e., R2 - 100), these higher-order coefficients do
not contribute to the solution and, hence, can be omitted.

Figures 5-8 show typical plots of the stream function vs. r for the prescribed
angular-velocity case, obtained for 0 = 45° with increasing number of terms in the series
(12a). These figures show that the number of terms required in the series increases with
increasing values of Reynolds number and time. Although not shown here, this was also true
for the values Tq, Q, and w,. The number of required terms also increased with decreasing
radius ratio (r,lr2 ). The series failed to converge at steady state for case-study problems
a-IIIA-3 and a-IIIB-3.

Table la. Case study designations for prescribed angular velocity problem (a)

Case (I) Case (II) Case (III)
rl/r = 0.90 rl/r2 = 0.50 r1/r2 = 0.20

(A) (B) (A) (B) (A) (B)
wo =1 o 0 6o =1 o = 0 w, =1 = 0

R,2 w = 0 02 = w1 2 = 2 1 = 2 = 0 0 = 

10 a-IA-1 a-IB-1 a-IIA-1 a-IIB-1 a-IIIA-1 a-IIIB-1
50 a-IA-2 a-IB-2 a-IIA-2 a-IIB-2 a-IIIA-2 a-IIIB-2

100 a-IA-3 a-IB-3 a-IIA-3 a-IIB-3 a-IIIA-3 a-IIIB-3

Table lb. Case study designations for impulsive torque problem (b)

Case (I) Case (II) Case (III)
rl/r, = 0.90 rl/r 2 = 0.50 r/r 2 = 0.20
1, = 12 = 4.5847 11 = 12 = 0.2426 Il = 12 = 0.00248

(A) (B) (A) (B) (A) (B)
&o(O) = o =0 o(0) = w, =0 w,(0) = 1 o, =0

R2 & = o(o) = 1 W2 = w0 2() = 1 2 = 02() = 1

10 b-IA-1 b-IB-1 b-IIA-1 b-IIB-1 b-IIIA-1 b-IIIB-1
50 b-IA-2 b-IB-2 b-IIA-2 b-IIB-2 b-IIIA-2 b-IIIB-2

100 b-IA-3 b-IB-3 b-IIA-3 b-IIB-3 b-IIIA-3 b-IIIB-3

11
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Fig. 2. Plot of fo°)(r, t) versus radius, case study b-IIB (t = 0.005).

0'o

-
6:
X

u

i

-

o -4 terms
a - 5 terms
+ - 6 terms
x - 7 terms
o - 10 terms

Radius

Fig. 3. Plot of f'2)(r, t) versus radius, case study b-IIB (t = 0.005).
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Fig. 4. Plot of f(44(r, t) versus radius, case study b-IIB (t = 0.005).
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x
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LL
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I})
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Fig. 6. Plot of stream function versus radius, case study a-IIB-1 ( = 45°, steady state).

4.2. Results for prescribed angular velocity problem

Numerical results for fl and P were obtained as a function of x, r, and t for all of the case
studies designated in Table la. Typical results for the fl and P contours are shown in Figs
9-10. Contour plots for additional cases can be found in [34]. As can be seen, the contours
shown in these figures are in close agreement with those obtained from Yang's [33] numerical
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Fig. 7. Plot of stream function versus radius, case study a-IIB-3 ( = 45°, t = 0.001).
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Fig. 8. Plot of stream function versus radius, case study a-IIB-3 ( = 45°, steady state).

solution. Although not shown here, the contours for steady flow are in good agreement with
those obtained by other investigators [22, 23] for case study a-IIA-3.

Values for the viscous torques (Tq) for several cases are shown plotted as a function of
time in Figs 11 and 12. These figures show that the viscous torques T, and T2 attain the same
asymptotic value at steady state. In general, the time required to attain steady state increases
with decreasing radius ratio r/r 2. These figures also confirm that, for R2 100, the
higher-order terms in the series for Tq do not contribute significantly when rr 2 0.2
(approximately).

- Gagliardi

Fig. 9. Plot of contour lines for Q, case study a-IIIB-1 (t = 0.005).
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- Gagliardi

Fig. 10. Plot of contours lines for 104A, case study a-IIIB-1 (t = 0.005).

The results for the steady state viscous torques (Tq) are plotted as a function of the radius
ratio r2 /r1 for R1 = 15 and 45 in Figs 13-14. The results in these figures are shown compared
to: (a) the limiting values (r2 /r, -- oo) obtained from Dennis, Singh, and Ingham [31], (b)
values predicted by the Couette-flow theory (r2 /r-* 1), and (c) values obtained by Yang's

[33] numerical solution. The comparisons shown in these figures indicate that flow in an
annulus with r2 /r1 - 4 (approximately) furnishes a reasonable representation of the flow
around a sphere rotating in an infinite medium for cases where R, - 45. These figures also
show that the results from this investigation approach those predicted by the Couette theory

0

0

0.00 o.oa 0.10 0.10 0.20 0.26 0.30 o.1a 0.40
Tlme

Fig. 11. Plot of viscous torque vs. time, case study a-IIIA.
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Fig. 12. Plot of viscous torque vs. time, case study a-IA.

as r2/rl-* 1, and are in good agreement with those obtained from Yang's [33] numerical
solution. Moreover, these figures indicate that, for this range of R1, the torques Tq are
independent of R, for r2 /rl - 1.7 (approximately).

A comparison of the steady-state torques (Tq) obtained by several investigators is shown
in Table 2 for case studies a-IIA-3 and a-IIB-3. It can be seen from this table that the results
of these investigations agree favorably.

4.3. Resuts for impulsive torque problem

Typical results for the f1 and T contours for the impulsive torque problem are shown in Figs
15-16. Contour plots for additional cases can be found in [34]. As can be seen, the contours
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Fig. 13. Plot of viscous torque (Tj) vs. radius ratio, case study a-A (R, = 15, steady state).
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Fig. 14. Plot of viscous torque (T,) vs. radius ratio, case study a-A (R, = 45, steady state).

Table 2. Comparison of results for steady-state viscous torques

Case study Case study
Investigator a-IIB-3 a-IIA-3

Gagliardi et al. 0.486 0.445
Yang et al. [33] 0.499 0.446
Dennis and Singh [7] 0.500 0.446
Dennis and Quartapelle [24] 0.517 0.445
Munson and Joseph [5] 0.497 0.441

- Gagliardi

Fig. 15. Plot of contour lines for 103 Q1, case study b-IIIB-2 (t = 0.05).
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- Gagliardi

Fig. 16. Plot of contour lines for 108 TI, case study b-IIIB-2 (t = 0.05).

shown in these figures are in good agreement with those plotted from Yang's [33] results. In
general, the results for the impulsive torque problem from this investigation were in good
agreement with those obtained by Yang [33] for all cases where Rq 100 and r2/r, 2.
Profiles at 0 = 45° of ft and P obtained from this investigation are also shown plotted in Figs
17-18 as a function of time for various values of the radius r. These figures show the build-up
and asymptotic decay of the motion of the fluid contained in the spherical annulus.

Typical magnitudes of the viscous torques (Tq) are presented as a function of time in Figs
19-20. These figures show that the magnitude of the viscous torque on the stationary sphere
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Fig. 17. Plot of n vs. time, case study b-IIA-1 ( = 45°).
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Fig. 18. Plot of P vs. time, case study b-IIA-1 ( = 45°).

increases with time from zero to a maximum value and then decreases asymptotically back to
zero. Figure 20 shows that, for the narrow-gap cases (rl/r2 -_ 0.9), the viscous torque on the
stationary sphere builds up very rapidly and attains a value equal in magnitude to that acting
on the rotating sphere. This can be attributed to the dominance of the viscous effect in this
case. The figures also show good agreement between the results of this investigation and
those obtained from Yang [33].
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Time

Fig. 19. Plot of viscous torque vs. time, case study b-IB-1.
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Ca.
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Fig. 20. Plot of viscous torque vs. time, case study b-IIIA-3.

Plots of the angular velocity ( 2) vs. time are shown in Figs 21 and 22. These plots show
that the value of the dimensionless angular velocity decays asymptotically from the initial
value to zero. In general, the rate of decay increases with increasing radius ratio (rl/r 2 ) and
decreasing inertia ratio (I,). The figures also show that the results from this investigation are
in good agreement with those obtained by Yang's [33] numerical solution.

;w2

Time

Fig. 21. Plot of w,2 vs. time, case study b-IB-3.
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Fig. 22. Plot of o2 vs. time, case studies b-IIB-1 & b-IIB-3.

5. Conclusion

The primary purpose of the research reported in this paper was to study the use of the
perturbation method with series truncation, by use of orthogonal Gegenbauer polynomials,
to analyze the transient motion of a fluid in an annulus between two concentric spheres
which are started suddenly due to the action of prescribed torques. The comparison of the
results obtained from this and other investigations, in particular Yang [33], indicates that this
method can be used satisfactorily for small Reynolds numbers (R2 ~ 100) and radius ratios
r1/r 2 - 0.2. The method has the advantage that, for small Reynolds numbers, only few terms
are required in the series expansions for Qf and T and, hence, it is practical for obtaining the
solution in closed form.
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